Высота пирамиды

Объем пирамиды коротко о главном

Пирамида – это многогранник, который состоит из любого плоского многоугольника (основание пирамиды), точки, не лежащей в плоскости основания, (вершина пирамиды) и всех отрезков, соединяющих вершину пирамиды с точками основания.

Треугольники, в которые «сливаются» эти отрезки, называются боковыми гранями, а отрезки, проведённые к вершинам основания — это боковые ребра.

Высота пирамиды – перпендикуляр, опущенный из вершины пирамиды на плоскость основания.

Правильная пирамида — пирамида, у которой в основании лежит правильный многоугольник, а вершина пирамиды проецируется в центр основания.

  • В правильной пирамиде все боковые рёбра равны.
  • Все боковые грани – равнобедренные треугольники и все эти треугольники равны.

Элементы пирамиды

Элементами этой геометрической фигуры являются:

  1. Место, куда сходятся все боковые грани фигуры, является вершиной.

  2. Многоугольник, от каждой стороны которого отходят треугольные грани, носит название основания. Например, оно может быть шестиугольным.

  3. Треугольники, соединяющиеся у вершины, с общей стороной с основанием, носят название боковых граней. У них противоположная вершина совпадает с точкой вершины пирамиды.

  4. Высота фигуры представляет собой вертикальный отрезок, ограниченный многоугольником основания и вершиной.

  5. На каждом треугольнике боковой стороны можно указать апофему. Она опускается от вершины по грани до ребра основания, будучи к нему перпендикулярной.

  6. Боковыми ребрами называют те отрезки, которые соединяют соседние боковые грани.

  7. У пирамиды может быть несколько диагональных сечений. Они включают в себя диагональ многоугольника вместе с вершиной пирамиды.

Объем пирамиды

Главная формула объема пирамиды

\( \displaystyle \Large V=\frac{1}{3}{{S}_{осн}}\cdot H\)

Откуда взялась именно \( \displaystyle \frac{1}{3}\)?

Это не так уж просто, и на первых порах нужно просто запомнить, что у пирамиды и конуса в формуле объема есть \( \displaystyle \frac{1}{3}\), а у цилиндра – нет.

Теперь давай посчитаем объем самых популярных пирамид.

Свойства правильной пирамиды

У такой фигуры можно отметить особые свойства. 

Вот их список:

  1. У правильной пирамиды все боковые треугольники одинаковы.

  2. Каждая из них является равнобедренным треугольником.

  3. Внутрь любой такого типа пирамиды можно вписать сферу. При этом она будет касаться основания и всех граней, имея с каждой из этих сторон по одной общей точке.

  4. Снаружи возможна сфера, касающаяся всех вершин.

  5. Нетрудно вычислить площадь поверхности такой фигуры. Для этого надо умножить длину периметра многоугольника, находящегося в её основании, на половину длины апофемы.

  6. Особым случаем является ситуация, когда у вписанной и описанной сфер центры совпадают. В этом случае можно утверждать, что если сложить все плоские углы у боковых граней, то их сумма будет равна числу «Пи». При этом, для того чтобы узнать величину каждого из них, достаточно эту величину разделить на количество граней.

Формулы для высоты правильной пирамиды

Существует четыре основных линейных характеристики для любой пирамиды правильной:

  • сторона основания;
  • боковое ребро;
  • апофема боковой грани;
  • высота фигуры.

Все они связаны математически друг с другом. Обозначим длину стороны основания символом a, высоту — h, апофему — hb и ребро — b. Формулы, которые эти величины связывают, имеют индивидуальный вид для соответствующей n-угольной пирамиды. Например, для правильной пирамиды четырехугольной высоту можно определить по формулам:

h = √(ab2 — a2/4);h = √(b2 — a2/2).

Эти формулы следуют из теоремы Пифагора при рассмотрении соответствующих прямоугольных треугольников внутри пирамиды.

Если рассматривается фигура с треугольным основанием, тогда справедливы следующие формулы для высоты правильной пирамиды:

h = √(ab2 — a2/12);h = √(b2 — a2/3).

Теги