Содержание материала
- Что такое мощность алфавита
- Определение информационного объёма в тексте
- Что такое мощность алфавита: начальное понятие
- Отображение символов в двоичном коде
- Как находить мощность алфавита и использовать ее в компьютерном выражении
- Представление символов в двоичный код
- Описание термина
- Правильные названия единиц измерения данных
- Как определить объем информации в тексте?
- Примеры расчёта мощности
Что такое мощность алфавита
Под мощностью алфавита мы подразумеваем общее количество символов в нем. Для того чтобы узнать, какова мощность алфавита, необходимо просто посчитать количество символов в нем. Давайте разбираться. Для русского алфавита мощность алфавита равна 33 или же 32 символам, если не использовать «ё».
Давайте предположим, что все символы в нашем алфавите встречаются с равной вероятностью. Это предположение можно понимать так: допустим, у нас есть мешок с подписанными кубиками. Число кубиков в нем бесконечно, и каждый подписан лишь одним символом. Тогда при равномерном распределении, сколько бы мы кубиков ни доставали из мешка, количество кубиков с разными символами будет одинаково, или будет стремиться к этому при росте числа кубиков, которые мы достаем из мешка.
Определение информационного объёма в тексте
Почти всегда при наборе текста на компьютерах и других электронных устройствах приходится сталкиваться с написанием различных символов. К ним следует отнести:
- заглавные и жирные буквы;
- курсив;
- скобки;
- знаки препинания;
- вычислительные операции и прочее.
По всем расчётам получается, что мощность компьютерного алфавита составляет 256 различных символов и вариантов. В соответствии с формулой Хартли, N = 256, а i — масса любого из значков в клавиатурном алфавите соответствует одному байту, или восьми битам.
Размер любой напечатанной фразы может быть вычислен по формуле V=K ⋅ log2N. В этом случае N обозначает количество всех символов в алфавите, а K — это численность знаков непосредственно в напечатанной фразе. Так, например, имеется произвольный текст объёмом в 25 листов. На каждом из них расположено по 45 строчек текста, содержащих по 58 символов.
Исходя из этого, на любой отдельной странице будет 45*58 = 2610 байт информации. В целом же по всему тексту этот объём будет равен 2610*25 = 65250 байт. Для обозначения мощности алфавита в информатике общепринятым вариантом является буква N из формулы Хартли. Именно ее чаще всего указывают в большинстве учебников и профессиональной литературе.
В кодовой таблице ASCII используют восьмибитную кодировку текстовых сообщений. Она позволяет полностью вместить основной набор символов кириллического и латинского алфавитов как в строчном, так и в прописном вариантах. Также с её помощью можно отобразить знаки препинания, цифры и прочие базовые знаки. Часто пользователям приходится иметь дело с более крупными объёмами, состоящими из триллионов байтов.
Для удобства их всегда переводят в увеличенные величины — кило-, мега-, гигабайты и прочее. Для их упрощённого обозначения используются специальные сокращения: Кб, Мб, Гб и так далее. 1 Кб равняется 1024 байтам (2 байта в десятой степени), 1 Мб составляет 1024 Кб (2 Кб в десятой степени) и так далее. Исходя из этого, 65250 байт будут составлять 63,72 килобайта.
Поскольку один отдельный символ состоит из 8 битов, то устанавливать их кодировку целиком не представляется возможным. Вместо этого предпочтительнее образовать кодировку трёхбитовых комбинаций. Расчёт этого действия проводится по формуле Хартли, где n-ная степень будет равняться трём. В результате получается N, равная 8.
При определении мощности чаще всего используют алфавитный подход. Он говорит о том, что объём информации, заложенной в тексте, зависит исключительно от мощности самого алфавита и размера сообщения (то есть количества символов, содержащихся в нём). Этот показатель не имеет никакой связи со смысловым наполнением для человека.
Что такое мощность алфавита: начальное понятие
Итак, если следовать общепринятому правилу, что конечное значение какой-либо величины представляет собой параметр, определяющий, какое количество раз эталонная единица уложена в измеряемой величине, можно сделать вывод: мощность алфавита есть полное количество символов, использующихся для того или иного языка.
Чтобы было понятнее, оставим пока вопрос о том, как находить мощность алфавита, в стороне, и обратим внимание на сами символы, естественно, с точки зрения информационных технологий. Грубо говоря, полный список используемых символов содержит литеры, цифры, всевозможные скобки, специальные символы, знаки препинания, и т.д. Однако, если подходить к вопросу о том, что такое мощность алфавита именно компьютерным способом, сюда следует включить еще и пробел (единичный разрыв между словами или другими символами).
Возьмем в качестве примера русский язык, вернее, клавиатурную раскладку. Исходя из вышесказанного, полный перечень содержит 33 литеры, 10 цифр и 11 специальных знаков. Таким образом, полная мощность алфавита равна 54.
Отображение символов в двоичном коде
Алфавитная мощность может быть использована на практике только при наличии двоичного кода. В качестве примера можно использовать упрощённый алфавит, состоящий всего из четырёх символов. В этом случае разрядность их и информационное представление описываются следующим образом:
- 1 — 00;
- 2 — 01;
- 3 — 10;
- 4 — 11.
Из этого списка можно сделать вывод о том, что если алфавитная мощность равняется 4, то масса отдельного единичного символа будет составлять 2 бита. Если же есть алфавит, состоящий из 8 символов, то при подборе двоичного трёхзначного кода для него комбинационное количество будет следующим:
- 1 — 000;
- 2 — 001;
- 3 — 010;
- 4 — 011;
- 5 — 100;
- 6 — 101;
- 7 — 110;
- 8 — 111.
Иными словами, если алфавитная мощность равна 8, то вес отдельно взятого символа для двоичного трёхзначного кода составит 3 бита.
Как находить мощность алфавита и использовать ее в компьютерном выражении
Теперь попробуем посмотреть на зависимость, которую выражает количество знаков в коде и мощность алфавита. Формула, где N – алфавитная мощность алфавита, а b – количество знаков в двоичном коде, будет выглядеть так:
N=2b
То есть, 21=2, 22=4, 23=8, 24=16 и т.д. Грубо говоря, искомое количество знаков самого двоичного кода и есть вес символа. В информационном выражении это выглядит так:
Мощность алфавита, N | 2 | 4 | 8 | 16 |
Количество знаков кода, b | 1 бит | 2 бита | 3 бита | 4 бита |
Представление символов в двоичный код
Итак, что такое мощность алфавита, Я думаю, немного понятно. Теперь посмотрим на другой аспект, в частности, практической деятельности власти, используя двоичный код. В качестве примера, для простоты, мы принимаем алфавит, содержащий только 4 символа.
В двухразрядный двоичный код и вид информации, можно описать следующим образом:
Серийный номер | 1-й | 2-й | 3-й | 4-й |
Двоичный код | 00 | 01 | 10 | 11 |
Отсюда простой вывод: С мощность алфавита Н=4, символ удельный вес составляет 2 бита.
Если вы используете три-значный двоичный код для алфавита, например, 8 символов, то количество комбинаций будет выглядеть следующим образом:
Серийный номер | 1-й | 2-й | 3-й | 4-й | 5-й | 6-й | 7-й | 8-й |
Двоичный код | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
Другими словами, когда мощность алфавита Н=8 вес одного символа трехзначный двоичный код будет равен 3 битам.
Описание термина
Понятие мощности алфавита находится в основании изучения информатики. Алфавитом принято называть набор многочисленных символов. Сумма всех их в определённом языке и есть алфавитная мощность. Иными словами, это количество всех символов, входящих в конкретно взятый язык. Сюда входят не только буквы, но и прочие обозначения, в частности:
- числа;
- спецсимволы;
- двоеточия;
- пробел;
- скобки;
- запятые;
- точки;
- многоточия и прочее.
Правильные названия единиц измерения данных
Для того чтобы устранить некорректности и неудобства, в марте 1999 года Международной комиссией в области электротехники были утверждены новые приставки к единицам, которые используются для определения объема информации в электронной вычислительной технике. Такими приставками стали «меби», «киби», «гиби», «теби», «эксби», «пети». Пока эти единицы еще не прижились, так что, скорее всего, необходимо время для введения этого стандарта и начала широкого применения. Как осуществлять переход от классических единиц к новоутвержденным, вы можете определить по следующей таблице:
Предположим, что мы имеем текст, который содержит K символов. Тогда, используя алфавитный подход, можно вычислить объем информации V, который в нем содержится. Он будет равен произведению мощности алфавита на информационный вес одного символа в нем.
По формуле Хартли мы знаем, как вычислить объем информации через двоичный логарифм. Предположив, что количество знаков алфавита равно N и количество знаков в записи информационного сообщения равняется K, получим такую формулу для вычисления информационного объема сообщения:
V = K ⋅ log2 N
Алфавитный подход свидетельствует о том, что информационный объем будет зависеть только лишь от мощности алфавита и размера сообщений (то есть количества символов в нем), но никак не будет связан со смысловым содержанием для человека.
Как определить объем информации в тексте?
Обычно всегда при наборе текста можно использовать жирные, заглавные, и буквы с курсивом, знаки препинания, разнообразные скобы, операции вычисления и т.д. По расчетам получается, что мощность компьютерного алфавита — это 256 символов и вариантов. Следуя формуле Хартли, N=256, тогда масса каждого значка (i) в клавиатурном алфавите равна восьми битам, то есть один байт.
Размер нужно вычислять по формуле: V=K⋅log2N, N — это численность символов в алфавите, а количество знаков в напечатанной фразе – K. Например, дан любой текст, который уместился на 30 страницах. На каждой из них расположено по 55 строчек, в них по 65 символов. Получается, что на странице будет 50 х 65= 3 575 байт информации.
Примеры расчёта мощности
От пользователей или обучающихся в задачах часто требуют научиться определять информационный объём какого-либо сообщения, приняв информационный вес символа за один байт. Так, в отрывке из поэмы Н. Н. Некрасова «Крестьянские дети»:
«Однажды, в студеную зимнюю пору,
Я из лесу вышел; был сильный мороз»